Heat Shock Protein as Molecular Targets for Breast Cancer Therapeutics
نویسندگان
چکیده
Recent advances in the understanding of the molecular mechanisms involved in the breast cancer development and progression have led to the identification of numerous novel molecular targets. Among these, heat shock proteins (HSPs) are being emerging molecular target due to its diverse function in cancer cells. HSPs are highly conserved molecular chaperone that are synthesized by cell in response to various stress conditions. Mammalian HSPs have been classified into several families according to their molecular weight: HSP100, HSP90, HSP72, and small molecular HSPs (including HSP27). They are essential proteins that play a key role in cell survival through the cytoprotective mechanisms. In addition, HSPs are often overexpressed in a rage of cancers including breast cancer, and its overexpression seems to be associated with poor clinical outcomes. Also, HSP90 play a role in facilitating transformation by stabilizing the mutated and overexpressed oncoproteins found in breast cancer cell. Pharmacological targeting of HSP is therefore indicated and in the case of HSP90, numerous inhibitory drugs are undergoing clinical trial for treatment of breast cancer and other cancers. In this review, we describe the roles of HSPs in cancer cell and introduce the HSPs inhibitor as molecular target in cancer therapy and its recent clinical trials in breast cancer.
منابع مشابه
Evaluation of Salivary Level of Heat Shock Protein 70 in Patients with Breast Cancer
Introduction: Breast cancer is the most common cancer diagnosed among women worldwide. Increased molecular and genetic information about cancer has improved diagnostic, screening, and treatment methods for cancer. Heat shock protein 70 (HSP70) is overexpressed in breast cancer patients and involved in malignant properties of breast cancer. Due to the noninvasive nature of saliva collection and ...
متن کاملMitotic catastrophe cell death induced by heat shock protein 90 inhibitor in BRCA1-deficient breast cancer cell lines.
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in folding, assembly, maturation, and stabilization of the client proteins that regulate survival of malignant cells. As previous reports correlate high Hsp90 expression with decreased survival in breast cancer, Hsp90 may be a favorable target for investigational therapy in breast cancer. In our study, we have examined the response...
متن کاملPotential Hsp90 Inhibitors: A Novel Target for Cancer Therapy
The uncontrolled growth of abnormal cells in the body is Cancer. With the rapid progression of molecular biology and genetics, emerging targets and therapeutics provides new opportunities for the prevention and treatment of several major disease systems. During drug discovery research many targets against cancer were also discovered. Hsp90 (heat shock protein 90) is a chaperone protein that ass...
متن کاملExperimental Therapeutics, Molecular Targets, and Chemical Biology Heat Shock Protein 90 Inhibitors: New Mode of Therapy to Overcome Endocrine Resistance
Aromatase inhibitors are important drugs to treat estrogen receptor α (ERα)–positive postmenopausal breast cancer patients. However, development of resistance to aromatase inhibitors has been observed. We examined whether the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) can inhibit the growth of aromatase inhibitor–resistant breast canc...
متن کاملHistone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B.
Histone deacetylase inhibitors induce hyperacetylation of the amino-terminal lysine residues of the core nucleosomal histones, which results in chromatin remodeling and altered gene expression. Present studies demonstrate that exposure to a novel hydroxamic acid analogue histone deacetylase inhibitor, LAQ824, induced p21WAF1 and p27KIP1 and caused growth arrest and apoptosis of human breast can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2011